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1. INTRODUCTION

Let U,, ke N,, denote the Chebyshev polynomial of the second kind of
degree k. We say that a real function 7 defined on [a, b], a, beR, a<b, is
a sign function on [aq, #] if there is a decomposition of the interval [q, b],
a=x,<x,< --- <x,=h, reN, such that & or —7% takes the value (—1)/
on the interval (x,_,,x;), j=1,..,r. S(h, [a, b}) denotes the number of
changes of sign of A on [a, b].

Many qucstions on L'-approximation lead to the following problem:

(a) Let real numbers b, ..., b, be given. Determine a sign function %
on [—1, +1] with S(A, [—1, +11)=1 (>n), such that

+1
j Udx)B(x)dx=b,,, for k=0,..n—1, (1)
—1
e,
f”sinkw(q))d(p:bk for k=1,..n,
0

where A(¢p) = h(cos @) for pe[0,n].

Under appropriate conditions on the numbers b,, we describe in this
paper all those sign functions which have a finite number of changes of sign
and satisfy (1). It is shown that the points at which those sign functions
change sign depend in a certain manner on orthogonal polynomials.

For the special case S(h, [ — 1, +1]) =n, problem (a) is of a type similar
to the so-called L-problem of moments treated by Ahiezer and Krein [4]
and Geronimus [6]. See also [8].

This paper is organised as follows. In Section 2 we solve problem (a)
for the special (but very important) case where S(A, [—1, +1])=n. In
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Section 3 we describe all sign functions which solve (1). Section4
contains applications of the theory to special problems (Posse’s
problem, L'-approximation on several intervals, etc.). Finally, we show
in Section 5 that there is a close connection between Chebyshev-, L!-, and
L*-approximation with respect to a suitable weight function on two
intervals.

2. SOLUTION OF PROBLEM (a) FOR THE SPECIAL CASE S(h, [—1, +1])=n

In order to state our results we need the following notation. Let D be the
open unit disk {z]|z| <1} in the complex plane. As usual we call a function
F: D — C a Carathéodory function (C-function) if F is analytic in D and
Re F(z)>0 for zeD. It is well known that a function F, normed by
F(0)=1, is a C-function if and only if it admits a representation

1 (ne 4z
F(z)=— .
() 2n Jo e —z

do(@) for zeD,

where ¢ is a nondecreasing function with (1/2r) (2" do(¢)=1. If F is a real
C-function, i.e., if F takes real values for real z, then a(¢)= —0(2n — ¢) for
@e[0,2n]. A bounded nondecreasing function ¢ on [0,2r] with an
infinite set of points of increase will be called a distribution function.
Furthermore, we say that a C-function F is nondegenerate if ¢ is a dis-
tribution function, ie., F is not of the form ic + 37_, u((e" + z)/(e” — z)),
where ceR, y,eR", and 0< ¢, <@, < --- <9, <2

If 5 is a distribution function on [0, 2n] normed by (1/27) {2* do(¢)=1,
then P,(z)=z"+ ---denotes that polynomial which is orthogonal on the
unit circle with respect to the weight do, ie.,

2n
f e“"j‘PP"(ei‘P) do—(q)) =0 fOI‘ j= 09 ey B— 1'
0

2 == | G (P ()~ Puf2)) dolg) ="+ -

0 €% —z

denotes the polynomial of second kind with respect to do.
Let us note that the polynomials P, resp. 2, satisfy a recurrence relation
of the type

P, (z)=2P,(2)—a,P}(2)
resp.
Qn+ l(z) = ZQ"(Z) + 6"9:(2),
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where P*(z)=z"P,(z') denotes the reciprocal polynomial of P,. The
parameters a, and thus the polynomials P, resp. @2, are real, if
a(@)= —6(2n— @) for @ [0, n]. Polynomials which are orthogonal on
the unit circle are studied in detail in [7]; see also [16].

Henceforth we call a sign function % (k) on [—1, +1] ([0, n]) a normed
sign function if lim, _ o« A(1 —&)=1 (lim, _, o+ h(g) =1).

THEOREM 1. Let a real sequence (b,).c~ be given and let F(z)=
exp(—YF_, byz*). Suppose that F is a nondegenerate C-function with
distribution function . For each ne N let h, be that normed sign function on
[0, ] which changes sign exactly at the n zeros of the cosine polynomial
(z=e", @el0,n])

Re{z~ "~ V2P ()} Im{z~ "~ VQ,(z)}
sin ¢ '

Then
(a) [zsinkoh(@)do=b, fork=1,.,n,

(b) [sin(n+1) @ h,(¢)dp—b,,, = (4/n) {5 [Re{z~"~ 2P (2)}1*
do(p),

(c) there is no other normed sign function g, with S(g,,[0,n])<n
which satisfies (a).

Proof. Ad (a). In view of [7, pp. 14-15] and the fact that P, and Q,
have real coefficients, the following representations hold:

zP,(z)+ PX(z)
(n+1—61—687)/2

=(z—1)2(z+1)% I1 (1-2cos ¥;z+27%)

i=1
and

22,(z) = 27(2)
(n+1-38;—8,)2

=z-1%z+1)2 [ (1=2cos@,z+2%), (2)
j=1
where
6,=86,=0 and oy =05=1 for n odd,

0,=08,=0 and d,=08=1 for n even,
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Y,0;€(0,n) and O0<¥ <@, <¥,<@,<---. Setting m=(n+1-~
8, —90,)/2 and m' = (n+ 1 -5, — 85)/2, we get for z=¢", @€ [0, n], that

2Re{z~ " 17P (2)}
=z " DR[zP (z)+ PX*(z)]

=(z—1)°(z+ 1)z #2227 [T (cos ¢ —cos ¥))
i=1
and

2iIm{z ="~ D2Q (2)}
=z " U2[20,(2) - Q¥(2)]
=(z—1)°(z+1)% 2~ Ci+%22 T (cos ¢ — cos ;).
i=1
Since (see [7, Theorem 6.1])

Qr(z)—z8,(2)

—- n+1
Pro) o) L@ FOET)

=exp<—zn: bkz">+0(z"“) (3)

k=1
for ze D, we obtain that

m( (z—1)%(z + 1)% m‘1(1 —2cos ¢,z+22)>
(z—1)"(z+ D)2 [, (1—=2cos ¥,z + 2%)

=— Z byz*+ 0"+, (4)

k=1

where the principal branch of In is chosen. Using the series expansion

In(1 =2 cos @z +2%)= -2 f: cosk<p z* (5)
we deduce that
b, =% {jg cos k(pj—jg:1 co§ kY, +l*_(%lf_f}
- fo" sinkg h(p)dp  for k=1,..n, (6)

where the last equality follows by direct calculation.
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(b) From the relations (see [7, (18.11) and (18.12)])

2 K n+1
F(z) P3(z)— @3(z) === 4 0(" )
0
and
ZK n
Fiz) Pyf2) + 2,(:) ==+ 0" ")
0
for neN,, where ¢o=(1/2n) (3 do(¢)=1 and K,=(1/2m) [3"|P,(z
da(¢), it follows that for ne N and ze D

Q1 (z) —202,(2)

Fe) = F v 2r00

=2K,(1+a,) 2"+ +0(z"+2). (7)

Furthermore, let us note (see [7, (4.1) and (31.12)]) that

x V12
K(l+a,)= K, _ij’; [Pn+1(2)+P,’f+1(a)] do ().

(1—a,) 4n 221 —q,)

Using the relation

P, (2)+ Pr(z)= (1 —a,)[zP,(z) + PJ(2)]

we obtain that

K1 +a) == [ [Refz =~V ()} T doto), ®)

From (4), (5), and (6) it follows that for ze D

(z—1)°(z+ 1)‘551_[;"' (1=2cos ¢,z +2?%)
(z— 1z + )2 T (1 —2cos ¥,z +2%)

= ~—(blz+ AR Z bk_,,z"),

k=n+1

In—

where

b,”,:'[: sinkg h(@)de  for kzn+l. )

Using relation (2) we obtain that

QX(z)—20,(2) ntl ) n
Gy (5 byt =b 10

k=1

=[F2)+ 0@ )+ (bpy 1 —bpy 1) 2"+ 0 2],
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Since F(0)=1 we get that

232)—22.,(2)

Fz) PX(z)+zP,(2)

z(bn+1,n—bn+1)zn+l+0(zn+2)'

The assertion follows now from (7), (8), and (9).

(c) Concerning part (c), assume that there is an other normed sign
function g, with S(g,, [0, n]) <n which satisfies (a). Then

j” sin ko[h(0)— g,(0)1do=0  for k=1,..n. (10)
Q0

Since S(h, — g., [0, m])<n—1, there is a sine polynomial s# 0 of degree
<n, such that sgn s(¢) sgn[4,(¢)— g.(e)] =0. Using the fact that 4, +# g,
on a set of positive measure, it follows that

I st0)thto) = gato)1 do >0,

which is a contradiction to (10).
Remark 1. Let us note (see [7, pp. 2—4 and 6-7]) that the polynomials
P, and 2, of Theorem 1 depend on b, .., b, only.

THEOREM 2. If for each neN there is a normed sign function h, on
[0, =] such that S(h,, [0,n])=r and

f" sinkg h (o) do=b, for k=1,..n,
0

then F(z)=exp(—X.2_, b, z*) is a nondegenerate C-function and h,,, ne N,
changes sign exactly at the n zeros of (z=¢", pe[0,n])

Re{z~"~D2pP (z)} Im{z "~ 1?Q,(z)}
sin @ '

Proof. Suppose that A, changes sign exactly at the » points ¥, ..,
Yns 121 @is s Pra2), Where 0< ¥, <@, < ¥, < @,.... Putting

Surr(2)=(z2—1)%(z+1)2 [T (1 —2cos ¢,z +2°)
ji=1
and

Fasr(z)=(z=1)(z+ 1) [] (1 —2cos ¥,z +2%),

Jj=1
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where 8, 8,, 8,, 85, m, and m' are defined as in the proof of Theorem 1, we
obtain with the help of (4), (5), and (6) that

—s”—‘(z)=exp<— 3 bkzk>+0(z"+l) (11)

Iy 1(2) k=1

for ze D. On the other hand, partial fraction expansion gives, by setting
¥ (n 122 =7 for n even, that

_s,,+1(z) [(n+2)/2] 1—-22

' =1+ ) d 12
rnii(2) T 1—2cos ¥,z +2’ kgl k2 (12)

where, since s,,, and r,,, have interlacing zeros, A,eR* for
j=1,., [(n+2)/2] and

[(n+2)/2]
d;=2 Y Ajcosk¥, for keN.

ji=1

Since 4,eR™* it follows (see, e.g., [4]) that the sequence {d,};, where
d,=2, is positive definite on the circumference. Hence {d,}g is positive
definite on the circumference. By the Herglotz—Riesz theorem (see, e.g., [4,
p.45]), (11), and (12), it follows that F is a nondegenerate C-function. In
view of Theorem 1(a) and 1(c) the assertion is proved.

Next let us state some facts about the connection between polynomials
which are orthogonal on the unit circle and polynomials which are
orthogonal on [ —1, +17 (see [7, 16]).

Notation. Let ¥ be a distribution function on [—1, +1] with
[*1d¥(x)=1 and let v be a nonnegative polynomial on [ —1, +1]. Then
p’ denotes that polynomial of degree n with leading coefficient one, which
is orthogonal to P,_, on [—1, +1] with respect to the weight vd'P.
Furthermore, let

fH v(t) p,(t) —v(x) pr(x)

a¥(1)
1 —Xx

g, (x)=

denote the polynomial of second kind of vp? with respect to the weight d%.

For the following lemma see [7, 16].

LEMMA 1. Let o(p)= —n¥(cos @) for ¢ € [0, n] and o(¢@)=n¥(cos ¢)
for pe(m, 2n].
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(a) 27"*'Re{z "*'P,, _(2)} = p.(x),
Im{z "*'P,, ,(z)} —

2-—m+1 (1 —x?2)
Sin@ pmfl (x)’
Im{z="*'Q,,, (z)}
27m+1 2m—1 — ]
Sin(p qul(x)
Re{z "*'?P,, (2)}
b 2—m m — pll+x)
() cos ¢/2 m X,
I ~m+1/2P
27m m{Z : Zm(z)}:pf?:—-—x)(x)’
sin /2
I —m 4172
27m m{z : Q2m(z)}=q£r1jfc)(x)
sin /2
pm+l(_1)
= m(x)_— m—1{X
q -1 ¢ 1(x)

Jor x=X4z+1/z), z=¢", ¢ [0, n].
2

1 rm +1
© | [Re(z7"" Py ()} P dolo) =222 [ i) a()

mJo _

1 pm
~ [ [Re{z " 1Py, (2)} 1 do(o)

Yo

+1
=27t [T [l V@) 11 +x) d¥ ()
-1
Proof. Parts (a) and (c) can be found in [7, Sect. 30; 16, p.294]7.
Part (b) can be proved by the same methods.

Remark 2. If ¥ is absolutely continuous and ¥'(x)= w(x), then o is
absolutely continuous with ¢'(¢) = w(cos ¢)|sin ¢|.

Remark 3. From Lemma 1 and (2) we obtain the well-known fact that
the zeros of p,, and g,,_, resp. p{l +* and ¢{! * ¥ separate each other, where
the greatest zero of p{l*~* is greater than the greatest zero of g{! *+y.
Furthermore, we get from Lemma 1 that the zeros of p,, and p‘! ") resp.
p+x) and p'!—~) separate each other, where the greatest zero of p{! +<' is
greater than the greatest zero of p{! =),

LEMMA 2. Let F with F(0)=1 be a real nondegenerate C-function with
distribution function ¢ and let 6 denote the distribution function of the real



L'-APPROXIMATION 249

nondegenerate C-function 1/F. Let p,, be that polynomzal which is orthogonal
on [ —1, + 1] with respect to the weight d'P, where n®¥(cos ¢) = —a(¢p) for
@€e[0,n]. Then

(a) 2 m*'Re{z ""'Q,, (2)} = Po(x)
Im{27”1+192m71(2)} _

—m+1 : — 50 fz)
sin @
(b) 27mRe{Z*M+1/2QZm(z)} _puen
cos /2 "
- Im{z-»mﬂ/zs’)z,n(z)}:ﬁ” o
sin ¢/2 e

where §2, denotes as above the polynomial of second kind with respect to do.

Proof. Since Re F(z)>0 implies that Re{1/F(z)} =1/|F(z)|* Re F(z)>0
for ze D, it follows that 1/F is a real nondegenerate C-function, admitting a
representation

I e s
[ "2 45(p)  for zeD,

o ¥ —

where & is a distribution function with (1/2n) {3* d6(¢) = 1.
According to [7, Theorem 5.1] we have, for ne N, ze D, that

‘Q*( ) n+1
o) F(z)+0(z"""),
from which it follows that
* 1
Pra) 1 L gy,

QXz) Fz)

Using the fact that £, resp. P, satisfy a recurrence relation of the type

Q, . 1(2)=22,(z) = (—a,) }(z)
resp.

Pyii2)=2P,(2) + (—a,) PY(z),

we deduce that 2, is orthogonal on the unit circle with respect to the
weight dé. From Lemma 1 the assertion follows.
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3. DESCRIPTION OF ALL SOLUTIONS OF PROBLEM (a)

LemMMA 3. Suppose that o is a distribution function on [0,2n] with
o(p)= —0(2n—¢). Let leN,, 0<I<n-—1, be given and put
e = (3" e " do(9)/(3" do(@) for k=0,..,n—1 There exist two real
polynomials S, , ,, R, with leadmg coejﬁctent one, which have n+ 1 simple
zeros e resp. e’ % with 0< G, <V < <P, <P, <2n, such that

Sn+1( ) n+1-—
—m—l'(' Z CrZ +0(Z 1)

if and only if there exists a real polynomial q(z) = I_[j_1 (z—2z;), z;€ D, such
that

S, 1(2)=2q(2)Q,_ (2) —qz) Q% _(2)
and
R, (2)=2q/2) P,_[z)+q}(z) P}_[z).

Proof. Necessity. Since S, , , and R, , are real polynomials they are of
the form
) C(n+1-81-8)2
S, 1(2)=(z—1)(z41)% IT (1—2zcos ¢, +z7)
j=1
resp. (13)
(n+1-—381—83)2

R, 1(z2)=(z—1)*(z +1)* I1 (1 —2zcos ¥, +z%),

where 9, 05, 9y, 6,€ {0, 1}, ;, ¥;€(0, n).
Using the fact that the zeros of S, , and R, ., interlace, it follows that

01=0,=1 and 5=0,=0 for n even,
and (14)
01 =05=1 and 0,=08,=0 for n odd.

By partial fraction expansion we obtain (compare the proof of
Theorem 2) that the sequence {d, }s, defined by d,=2 and

 Suii(2)

=1+d z4 --- +dnz"+ sl
Rn+1(z) !

is positive definite on the circumference. Now let P, be that polynomial
which is orthogonal to the sequence {d,}g. Then it follows that

2P (2)+PHz)=R, \(z) and  zQ,(2)-3N2)=S,,,(2). (15)
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Since d, =c, for k=1, ..,n—1I, we deduce that P, can be generated by a
recurrence relation of the type

B, (2)=2P(z)—a, P¥(2) for k=0,.,n—

with |@,| <1 for k=0, .,n—1 and d,=a, for k=0, ..,n—1— 1/ Thus we
obtain that

2P (2)+ P}(z) = 2q/2) P,_[2)+ q*(z) P¥_(2)
and (16)
20,(2) = QX2)=2q/2) Q,_ (2) — qF(2) 2F_(2),
where ¢, is generated by the recurrence relation
Qri(2)=2q,(2)—a,_|_rq¥(z) for k=0,.,1-1,

with g4(z)=1. Hence ¢, has all zeros in D and by (15) and (16) the
necessity part is proved.

Sufficiency. Put P, ,,=zq,P, ,and Q,,,,=2q,2,_, Since PH,,
(82,.,,) has all zeros in D, we deduce by considering arg P, +1(€?)
(arg O, +1.(e)) that the trigonometric polynomials Re{z~"+"2p _ }
and Im{z @*V2F, | (Refz "0, .} and Im{z-@+123 "))
have all their zeros in [0, 27) and their zeros interlace.

Using the relation (see [7, p. 7])

P, Q% +Q, P¥ =kz""', keR™, (17)
we obtain that (z=e")
Refz V2B, } Refz " 120, )
+Im{2_(n+1)/2}~)n+1,1} Im{z="* U/ZQn+l,l}
=Re{P,, 12,1} =(x/2)lq/

from which it follows that the zeros of 2Re{z~"*!2P _ }=
2= +V2R, . and 2ilm{z= V2G| y =2z DRSinterlace.
With the aid of (17) we get by simple calculation that

9r(2) Q7_[z)—2q(2) Q, [(z) QF (2)

=0 n+1—l.
FE Pr ()T zaln) Py A2) Pr gz O )
Hence
Sn+l(z) ! k —
——— =14 Y ¢+ 0"
R, L o

and the lemma is proved.
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THEOREM 3. Assume that the given real sequence (b.), .~ satisfies the
assumption of Theorem 1. Let ne N, le Ny, n> [, and suppose that h, is a
normed sign function on [0, ] with S(h,, [0, n])=n. Then

J“ sinko h(¢)do=b,  for k=1,..n—1,
0

if and only if there exists a polynomial q(z)=11!_(z—z,), z;€ D, with real
coefficients, such that h, changes sign exactly at the n zeros of the cosine

polynomial

Re{z ="~ 2q(z) P,_(2)} Im{z" "~ g (2) Q, (2)}
sin ¢ '

Proof. Necessity. Suppose that h, changes sign exactly at the points
qll, aasy W[(n+1)/2], (pl’ veey (p[n/Z]’ Where 0< Wl < (pl < (I’2<(P2< Sty and let
S, and R, , be defined as in (13). Then we obtain with the aid of (4),
(5), and (6) that

S, +1(2) < = k) 11
— I —c=expl — Y b )+0OET .
R, :1(2) ,E o
From Lemma3 it follows that there exists a real polynomial

q(z)=TI'_, (z—z,), z;e D, such that

J
2Re{z"""Vqfz) P, (2)}
=z "TUPR, L \(2)

=(z—1)%(z+1)2z @227 [T (cos p—cos ¥,)  (18)

j=1
and
2iIm{z """ q(2) Q, _[2)}

=z RS, (2
=(z—1)%(z+1)%z- @ +8227 T (cos ¢ —cos @), (19)
j=1
where m=(n+1—=68,—68,)/2 and m'=(n+1-35]—93)/2.
Sufficiency. Putting
27+ DPR, L (z)=2Re{z " Viq(z) P,_[(2)}

and
27 B, (2)=2iIm{z Vg 2) Q, ()}
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it follows from Lemma 3 that

S z n—1|
_ "+1( ): _ Z bkzk+0(zn+lml)

Rn+l(z) k=1

and that S, ., resp. R, , | is of the form (18) resp. (19). Using the relations
(5) and (6), the sufficiency part is proved.

As a simple consequence of Theorem 3 we obtain a result of the author
which enables one to solve the Solotareff problem (see [12, 13]).

CoroLLARY 1. Let neN, leN,, n>1 and let h, be a normed sign
function on [0, ] with S(h,, [0, n])=n. Then

j" sinko h(p)do=0  for k=1,.,n—1,
0

if and only if there exists a real polynomial q(z)=T1;_, (z—z;), z;€ D, such
that h, changes sign exactly at the n zeros of the cosine polynomial
Im{z"* '~ 2g2(z) }sin .

Proof. For b,=0, k=1, ..,n—1, the assumptions of Theorem 3 are
fulfilled. Since P,(2)=02,(z)=2z" for veN,, the assertion follows
immediately.

4. APPLICATIONS

In the first part of this section we consider the following problem and
give some applications of it:

(a’) Let a B, ue[—1, +1]. Describe that normed sign function 7,
with S(&,, [—1, +11]) =n, which satisfies

+ 1 - B
f Uk(x)hn(x)dx=—uf Ulx)dx  for k=0,..n—1. (20)
1 o

Remark 4. In the following we need the well-known fact (see, e.g.,
[11]) that a C-function F with F(0)=1 admits a representation

lim Re F(re®)dp  for zeD,

0 e"p—Zr—>l

1 (e 4z
F(z)==—
(z) 2,J

if {¢|Re F(re®)| df is uniformly absolutely continuous for r < 1.
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LemMma 4. For a, fe[—1, +1], a<pB, Ae[—4 1], with {Jaf, |Bl} N
{2141} # {1} and v\, v, {3, =3}, let

nwgf},ﬂw, vz)(x)

_ X—o ;'(1——x)v‘(1+x)vz Sfor xe(—1,a)u(B 1),
x—p
x—olt

(I—=x)y"(1 +x)2cos(An)  for xe(a,p).

X —

By p\s*? we denote that polynomial of degree n with leading coeﬂic{ent
one, which is orthogonal to P, , on [ —1, 1] with respect to the weight
Sunction w2,

(a) Let i, be a normed sign function with S(h,, [—1,1])=n. Then

+1 B
j Uk(x)z,,(x)dx=—2/1f Ulx)dx  for k=0,..n—1,

if and only if h,, ne N, changes sign exactly at the n zeros of the polynomial

Pm N 1/2 71/2)p‘ i 1/251/2) for n=2m-—1,

b — 172, 1/2) (= 4, 1/2, — 172 —
P:ﬁ,a,ﬂ/ ”an,;,ﬂ/ 2 for n=2m.

Proof. Setting &, =arccos f, §,=arccosa, and A, (¢p)=h,(cos ¢) for
¢ € (0, ), it follows immediately that

1 [
j U,(x) h(x) dx = —24 j Udx)dx  for k=0, ., n—

is equivalent to

n 3
J sin ko h, (@) dp= —24 f " sin ko do
V]

8y

=%(cos ké,—coskd,)=:b,
for ke {1, .., n}. Thus we obtain with the help of (5) that for ze D
= 1-2cosdrz42°
— _ kY _ 2
F(z) .—exp( kg‘l bez ) exp {“n<1—2005(5,z+22>}

3 1—2008(522+22‘ex 2 ar (1—2cos522+z2
T [1—2cosd,z+22 pirarg 1—-2coséd,z4+22)§’




L'-APPROXIMATION 255

from which we deduce that
f(@):= lim Re F(re®)=Re F(e™)
ro1-

A

€OS ¢ — COs &,

for (pe(oaél)u(52an)

€OS @ — COS J;
A

—cos d
RPN cos(in)  for e (8,6,

CO$ (¢ —COS O,

Furthermore, we obtain that

g(p)=Re{1/F(e”)} = 1/f(¢) for ¢e(0,6,)u (6, 7),
=cos’(An)/f(¢)  for @€ (6,,d,)

Now let us suppose that i1e[0,1]. Using the inequality (z=re®,
re(0,1]) |122—2cos 8,z + 11> = r*{((1 + r*)/r) — 2cos(p — é,)}
{((1+r%)/r) — 2cos(+8,)} > 4r°{1 — cos(p—6,)}{1 — cos(p+5,)}
= 4r*{cos ¢ —cos &, }* and the fact that 1/|cos ¢ — cos 6,|* is integrable on
[0, =], since —1 <min{cos 8,24} <1, we obtain by Lebesgue’s theorem
that [¢ |Re F(re®)| df is uniformly absolutely continuous for r < 1. Thus, by
Remark 4, the distribution function ¢ of the real C-function F is absolutely
continuous on [0, =] with

o'(¢)=Re F(e') for ¢e(0, n) @2n

Analogously, one demonstrates that (21) holds also for Ae [—3,0].
The assertion follows now from Theorem 1, Lemma 1, and Lemma 2.

For the special case x = —f= —1 and Ae(—1, 1), Lemma 4 was proved
by Ahiezer and Krein [4, pp. 98-105] and recently proved again by Young
et al. [17, 18]

In 1880, Posse (see [8, pp.266-268]) studied the following problem,
now known under his name:

What conditions must the numbers a, be R, | <a<b, satisfy such that
there exists a polynomial O, = x"4 --- which satisfies

[1oa+-r [ o.<f1ed+-1r[ e, 22)

for all Q,eP, with leading coefficient one; when the conditions are
fulfilled, find a minimizing polynomial.

Posse solved the above problem with the help of elliptic functions. Tran-
forming (22) to the interval [ —1,a] U [f, 1], we are able to express the
minimizing polynomial in terms of orthogonal polynomials.

640/52/3-2
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LEMMA 5. Let o, Be(—1, +1) with a <B. Suppose that there exists a
polynomial Q,=x"+ ---such that

10 + [ o< 100 + [ 0
¥ (—)fﬂ I (—)L
for all Q, P, with leading coefficient one. Then

(a) Iilx"sgnQ,,(+)j}fx"=Ofork=0,...,n—

(b) S(@,.[—lal)zn—1.
() If S(Q,,[—1,a])=n—1, then O, (x—¢) < O for sufficiently
small e R™, (>)
Proof. (a) Follows by standard arguments.
(b) Assume that S(0,,[—1,a])<n—2. Construct JeP, ,, such
that
SgnQ=Sgn Qn on (_l’a)a

= + 1 on (f,1)
(=)

(23)

Then it follows from (a) that
3 1
0= 01+ 1| 101,
| 1o1+] 10
which is a contradiction.
(c) Suppose that there is a deR* such that 0,(x) > 0 for
(<)

x€(x—94,a). Then there is a polynomial Qe P, ,, which satisfies (23).
But this is a contradiction.

THEOREM 4. Let o, fe(—1, +1) with a < f§ and let ne N. There exists a
polynomial Q,=x"+ --- such that

[ai+] a.<[ 101+] o,

for all Q,eP, with leading coefficient one if and only if p\, /5~ ">" '
(P a5 > Y2) has no zero in (a, 1), if n=2m—1 (n=2m).
When the above condition is fulﬁlled then

Q _pin ;/2 —1/2, 41/2)p(1/2 1/2 1/2) fO" n="2m— 1, (24)

— pfn l/2 — 172, 1/2)p(1/2 1/2,—1/2) for n= 2m’ (25)

is a minimizing polynomial. Q,, is unique, if S(Q,, [ —1,a])=
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Proof. Necessity. Let the sign function %, be such that
h,=sgn 0, on [—1,a],
= +1 on (o, 1].
Then it follows by Lemma 5 that
+1 B
j x"hnzj x* for k=0,.,n—1,
—1 a

and S(%,, [—1, +1])=n. By Lemma 4 we conclude that %, is equal a.e. on
[—1, +17 to the sign of the polynomial given in (24) resp. (25). Observing
that %, has no change of sign on (a, 1], the assertion follows from
Remark 3.

Sufficiency. Follows immediately from the fact that

[ ied+] 0] o0+ 0= wsen,+] v

B -
=[" 121+ 0.

COROLLARY 2. Let a,ffe(—1, +1) with a<f and let neN. There
exists a polynomial Q,=x"+ --- such that

[T o.<[ 10d-[ o,

for all Q,€P, with leading coefficient one if and only if a and J satisfy the
condition of Theorem 4.

Proof. In view of [8, p.267] there exists a polynomial §, such that

23

o ~ l~ 1
f Q. + f Q,,Sf 1@, + J 0, forall Q,=x"+..eP,
S R R G L
if and only if
a 1
f |pu_1l + f Pn_120 forall p,_,eP,_,.
SR GO L

Observing that —p,_,eP
Theorem 4.

the corollary follows immediately from

n—1»

For n odd, the minimal solution of Posse’s (transformed) problem can be
determined with the help of Lemma 5 and Theorem 3.
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Next let us consider problem (a’) for the case where {a, B} N {24} =
{ £1}, which was excluded in Lemma 4.

LEMMA 6. Suppose that Be(—1, +1) and let h, be a normed sign
function on [ —1, +1] with S(h,, [—1, +1])=n. Then

+1 B
f Uk(x)zn(x)dx=(—1)"+1f Udx)dx  for k=0,.,n—1,

if and only if h,, changes sign at the zeros of the polynomial

[qm(-x’ B) _qumfl(x9 ﬁ)]
(x+1)

[pm(x’ ﬁ)—_dmpmfl(x’ ﬁ)]

for n=2m-—1,

and at the zeros of the polynomial
Prlx, 1) g,{x, —1)  for n=12m,
where d,,=q,,(— 1, BYqm_1(—1, B), and
Pl X )= [T, (y(0)) Ty o ((¥(x)) = T () T ¥(x)) ]/ (x — 1)
Gm(X, 1) =T, ( (1)) Up(3(x)) = T,y s f( (1)) Uy 1( (X))

with y(x)=(2x—B—1)/(1 —B). T, denotes the Chebyshev polynomial of
first kind of degree k.

Proof. Case (1): n=2m. Let g, , be that normed sign function which
changes sign exactly at the zeros of

Usm — 1(¥(x)) =T, (¥(x)) U,y _ 1 (¥(x)),
where y(x)=(2x—pf—-1)/(1—p). Then it is well known that for
k=0,.,n-2

L: Udx) §,_(x)dx=0, ie, ji] Udx) 2, ((x) dx= —jfl U(x) dx.

By Theorem 1 and Lemma 1 the assertion follows.

Case (2): n=2m—1. Setting b, = (3 sinkeo dp ={# | U, _,(x) dx for
keN it follows that

1—2cosé,z+22

- S p k) —exn 1L
H(z)-exp( kglbkz>—exp{zln< s )}

is a nondegenerate C-function which has a simple pole at z= —1. Since
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(see the proof of Lemma4) jg |Re H(re*’)| do is uniformly absolutely
continuous on [0, n—e]Ju[n+e¢ 2n}, ee R™, we get that

1 (e 4z
H(z)=— .
(2)=5; ] o du(o)
where
) _ 5 1/2
W(g)=Re H(e®)=|———221 " for ¢e(0,6,)
cosp+1
=0 for ¢@e(d,,n)
and g has a jump at z= —1 of amount

un+0)—p(n—0)=n 1injl{H(z)(z+1)}=nﬁ./1+cos5,.

Furthermore, we obtain that

1 1 Fﬂe""+z 1

= — ——d .
H@z) 2ndo e —zp(0) "

where 1/u'(¢):=0 for e (d,, n).
Since one can demonstrate that p,(x, §)—d,, p,.. (x, B) is orthogonal
on [ —1, 1] with respect to the distribution function (x =cos ¢)
Y(cosp)= —ul(p)/n  for ¢@e[0,n]

and that [q,,(x, f)—d,.q._(x, B)]/(x + 1) is orthogonal on [ —1, 1] with
respect to the weight function

w(cos @) =sin ¢/u'(p)  for ¢@e[0,n],

the assertion follows from Theorem 1, Lemma 1, and Lemma 2.

THEOREM 5. (a) For given ye (3, 0) and me N, there exists a number

Be(—1,1), such that B is the smallest zero of the polynomial
(1/2—1/2y,—1/2,—1/2) ( (1/2 —1/2y, 1/2,*1/2))
m 1, B Pm. 1.5 -

(b) Let ye (3, o0) and me Ny be given and assume that pe(—1, 1).
Then

B 1
[ 1pacsy [ iplds forall pePa, s (P, )



260 FRANZ PEHERSTORFER

and

B 1
[" 1p*e dx=y [ 100l dx
-1 B

if and only if B is that number which satisfies (a).
(c) The above inequality holds for v=1if and only if Be(—1, +1) is
such that
_2m+l U (p(=1)+ U, (y(-1))
2m—1 U, ((y(=1)+U,_(y(-1))
<_M+1=Tm+1(y(—1))>
m T.(y(=1) )

where y(—1)= —(3+ B)/(1 + B).

Proof. (b) Let yeR™. As in [14, pp. 172-174], one shows that the
condition

B 1 I 1
["pl<y[ 1l foralpep, , and [ 1pti=y] Ip*l (26)
1 B -1 B

is equivalent to

B 1
J psgnp*—yj psgn p*=0 forall peP,_,
—1 I

and p* has exactly (n— 1) simple zeros in (f, 1).
Putting P=(f — x) p* we deduce that (26) is equivalent to

+1 B
psgnP=(1—1/y)j psgn P forall peP, ,, (27)
1 1

P has n simple zeros in (—1, + 1) and the smallest zero of P is f.
For ye(1/2, ) it follows from Lemma 4 that

1/2—1/2y,—1/2,—1/2 12y — 172, /2, 1/2 f 2 2

pm( /f\.ﬂ/y 4 /)pm( C”l,*{.ﬁ/ ) Oor n—l—— m —
— /2y —1/2,—1/2, 172 172 - 1/2y, 1/2,—1/2 —_

p(,/}l, / /)p(,/ L/V / /2) for n._l Zm_|

In view of Remark 3, the assertion is proved.

(a) Follows from (b) and the fact that for given ye€ (0, co) there
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exists a fe(—1, +1) and a polynomial p*eP,_,, such that (26) is
fulfilled.

(c) From (27), Lemma 6, and Remark 3, we deduce that (26) holds
for y=1if and only if § is the smallest zero of

pm(x’ﬁ)_dmpm—l(x’ﬁ) for n_lzzm_zv
gau(x, —1) for n=2m,

where p,.(x, B), 9,.(x, —1) and d,, are defined in Lemma 6. With the help
of the well-known relations

T(x)=mU,_,(x), U,(y(f)=U,(-1)=(=1)"(m+1),
T.(y(B))=(-1)"

we obtain that

2m+1= pm(ﬂ’ﬁ) - qm(_—l’ﬂ)
2m_1 pm‘l(ﬁ’ﬂ) qm—l(_lyﬁ),

resp.

Cml_Tu(y(=1)
m T (=1)

Finally, let us characterize that polynomial of degree n with leading coef-
ficient one which deviates least from zero in the L'-norm on several disjoint
intervals. L'-approximation on two intervals was studied in [2,15]. A
criterion for solvability of the L-problem of moments on several intervals
has been given in [3] (see also [8, pp. 328-3291]).

In the following let E=[—1, 0, JU [f, 02w - V[B_, o, ]JU B, 1]
with —l <o, <f;< - <a,<f,<1.

LemMMa 7. Let e,e {—1,1}, v=1,.., 1 be given. By p, ., e= (g, .., &),
we denote that polynomial of degree n with leading coefficient one which is
orthogonal on E to P,_ | with respect to the weight function

v \X— O

wg(x)=\/11_x2 ﬁ (x—ﬁ:>“/2 for xeE.

Then

!

IH Uix) hy(x)dx =Y svjﬂv Ulx)ydx  for k=0,.,n—1,

- v=1 %y
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if and only if h, changes sign at the n zeros of the polynomial

PmePU=3),  for n=2m—1,

patopa =y for n=2m.

Proof. Llet 6,=arccosfi, and x,=arccosa, for v=1, ..,/ Simple
calculation gives

/ By {
Y gvf U=, glcoskd,—coskk,)k=:b, for k=1,..,n
v=1 v y=1

& g 1—2cosd,z+z°
F(z)=e — b, z*V =ex ._"1< v )}
) xp{ kgl kz} p{v§12 " 1—2cosk,z+ z?
B 1_’[ 1—2cosd,z+ 22|
S 1-2cosk,z 427
ox 2’: &, 1—2cos 6vz+zz>
P ~ 2 1—2cos:<vz+.z2 ’
we obtain, since

ar 1-2cosd,z+2"\
& 1—-2cosk,z+2%)

<

on [0, z1\(4,, x,),

T on (4,,K,),

i

that

" |cos ¢ —cos 8, |

]
ReFe(ei“’)z n cos @ —cos K for (PE[O’”:I\Z o, x,],

v=1 v v=1

=0 otherwise,

and
Re{1/F,(e’*}} = 1/Re F,(e') for @el0, ]\ i [6,,.%,)
v=1

Since jg |Re F.(re’®)| df is uniformly absolutely continuous (see the proof of
Lemma 4), the assertion follows by Remark 4, Theorem 1, Lemma 1 and
Lemma 2,

Let us note that the notation introduced above differs from that used in
Lemma 4.
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THEOREM 6. Let Q, be a pelynomial which deviates least from zero on E
with respect to the L'-norm among all polynomials of degree n with leading
coefficient one. Then (e = (¢, ... &)

JIQ [=2 min }{J pfn‘gws} for n=2m-—1,
ge{—1,1
ve {1, .., 1}

=2 min {j pﬁ,f“;x’]z(l+x)we} for n=2m.
ee{—-1,1} (YE ’
(1, 0}

If the minimum is attained for €= (&, ..., ;) then

Q =DPmz* pir:—lxlp for n=2m—1

=P py for m=2m
is a minimizing polynomial.

Proof. By standard arguments, one shows that Q, is an L'-extremal
polynomial on E if and only if

_[UksgnQ,,=0 for k=0,..,n—1. (28)
E

Because of (28) it follows that Q, has n simple zeros in (—1, +1), from
which we deduce that there is always a minimizing polynomial {J, on E,
which has n simple zeros in E.

For given, but arbitrary, e, e{—11}, v=1,.,1L let S,,_ .,
e=(&y, .., &), be that polynomial of degree 2m — | with leading coefficient
one, which satisfies

+1 ! By
f UksgnSZm,m:stj U, for k=0,.,2m—2 (29)
1

Ay

v=1

By Lemma 7, Theorem 1, and Lemma 1 it follows that

4

+1 By
j Uspn— 1580 8oy c= Z avJ. U2m71+22mj Ph W,
—1 E

Cv=1 Ay

Since the minimizing polynomial ,,,_; has all zeros in E we obtain
from (28) and (29), setting &,=sgn Qz,,,,l(x) for xe(a,, f,), that
Qo1 =8, _1¢ Using (28) and (29), we find
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2] Phowi=] 10an il <[ S0

E

=f ISmel,cl_J‘ |S2m71,s|
[-1,1] [-LINE

! By
=Y e Swoet2] pw—[ 1S 0
v=1 &y E L

—1L1INE
2
gzj pm,t:wc'
E

Thus the first part of the theorem is proved for #n odd. The case where n is
even is demonstrated in an analogous way.
Furthermore, it follows from Lemma 7 that Q, is of the given form.

5. CHEBYSHEV POLYNOMIALS ON Two DISIOINT INTERVALS

Notation. Let o, fe(—1, +1) with a< . For abbreviations let p,=

Weg >V resp. p,=plle A1 and let w=w( V2T resp.
w=wl ) V21D where pi;, ) and wi; 7 are defined in Lemma 4. ¢, ,
resp. §,_ , denotes the polynomial of second kind of p,, resp. p,. Let us note
(see the proof of Lemma 4) that ¢, ;= p! " and §, ,=p! .

The orthogonal polynomials {p,},cn, resp. {Fnlncn, satisfy a
recurrence relation of the type

pn(x) = (x—_an) pnfl(x) _inpn72(x)’
resp.
Pux)=(x—=8,)p,1(x) =7, p,_2(x).

For the recursion coefficients «,, 4, resp. 4,, /1,, a recurrence relation is
known (see [15]).

Let us recall (see Theorem 6 or [15]) that the L'-minimizing polynomial
on [—1,a]u [B, 1] can be constructed with the help of the polynomials
p, and p,. In this section we will show that these polynomials also play an
important role in Chebyshev approximation on [ —1,a]Ju [f, 1].

Notation. We say that a polynomial &, is a Chebyshev polynomial (7-
polynomial) on [—1,a]u[f, 1] if 7, deviates least from zero on
[—1,a]u[B, 1] in the maximum norm among all polynomials of degree n
and leading coefficient one.

A description of T-polynomials on two intervals in terms of elliptic
functions has been given in [1].
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LemMMA 8. Let ne N. Then

(@) (x — a)pix) + (x — B)(1 — )q,, (x) = A (x + 2,0 —
(B+a)/2), resp. (x—B) pAx)+ (x—a)(1=x7) G2 _(x) = A, (x+8,, —
(B +)/2), where A, = 2[*}| piw resp. A —Zj'“”l 2.

(b) (x—0) po(x) G, o(x)— (x = B) Pulx) g, () = (4, — 4,)2.

Proof. Part (a) has been given in [15, Lemma 3].

(b) Since (see, e.g., [5, Theorem 1.17])

(x)

1 —ox 5 > 2 2 q:—-l
oW x4 O(x )y =20
l—ﬁx,ﬁi?'<J P O =

and

1— 1 1 ~ %
—E{ __<J+ ﬁiW>X2"+0(x2"+l)=q'll(x)
max i W FHED

we obtain that

(1—ax)gr (x) qz'ln(x)_ o _ T o n+1
(1—Bx)pHx)  pX(x) ‘(Jl Pu¥ J 1 PiW)x +0(x**1),

from which (b) follows.

LEmMMa 9. The following properties are equivalent: (1) a,, = (f—a)/2;

( )qn ]( ) ( ) ﬁn’ 4)qn—l(ﬁ)=0. (5)&n+1:(a_ﬂ)/2

Proof. (1)< (2) follows immediately from Lemma 8(a).

(2)=(3): g,,_ () =0 implies by Lemma 8(b) that
(X_a)annflz(x*ﬁ) ﬁnqnfl' (30)

Since «,,,=(f—a)/2 it follows with the help of Lemma 8(a) that
P.(B)#0. Using additionally the fact that the zeros of p, and ¢, _, strictly
interlace, the implication follows from (30).

(3)=(2): p,= p, implies by Lemma 8(b) that
pn[(x—a)qnfl‘(x_ﬂ)qn—l]zAn_/Zn‘
Hence (x—2)g, ,=(x—$)q,_,-

The remaining equivalences are established analogously.

THEOREM 7. Let ne N. The following properties are equivalent:

(a) Z, is a T-polynomial on [ —1,a] v [B, 1] with (n+ 2) deviation
points.
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d) i tayors 1 X T(x)ulx)dx=0  for k=0, .., n, where

—1

/(1 —x?)(x — a)(x — B)

1
= , 1).
e I

c) I, =p,=p . attains its maximum at the zeros o
n pn pn n

(x* = 1)(x = B) g, 1(x)).

for xe(—1,a),

u(x)=

Proof. (a)=(b): Since J, has {(n+ 2) deviation points it follows from
[1, Theorem 11] that 7, attains its maximum at the boundary points — 1,
o, B, 1 and at (n—2) pomts y;€(—=1,a)u (B, 1). Setting

n—2
Su-alx)= T (x—)) 31)

we get
TAx)+ (1 =x)x—a)(x—B) S?_,(x)=L7 (32)
where L is the minimum deviation. Hence we obtain for x> 1 that

S,_a(x) 1 t
= o . 33
70 Jo—ne-peD) <x2"”> 49

With the aid of [10, Theorem 4.1 and pp. 494-495] we get that

! = u—(t-)—dt for zeC\[-1, +1],

\/(z—oc)(z—ﬂ)(zz—l)— [-tadup11Z2—1

from which (b) follows.
(b)=>(c): In view of (33) it follows that (x> 1)

(x—a)S,_,(x) SX—a 1
= O ——
T (x) Jx=B - 1)+ (x““)

+1 w(t) 1
_f s +0< 2n+1>,

which implies that

Tux)=pux) and  (x—a)S,_2(x)=q,_1(x). (34)

Analogously one demonstrates J, = p,.
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()= (a): In view of Lemma 9 and Lemma 8(a) we obtain that
(x—a) pa(x) + (x = BY1 = x?) g2 _,(x) = 4,,(x— ).
Setting S,_,(x) =g, _,(x)/(x —a) it follows that
pix)+ (x—a)(x = B)(1 —x%) S2_,(x)=4,,

from which we deduce that p, is a 7-polynomial on [ — 1, x] U [f, 1] with
(n + 2) deviation points and minimum deviation /A4

COROLLARY 3. Suppose that 9, is a T-polynomial on [ —1,a] U [P, 1]

with (n + 2) deviation points. Then 7,,- J ,,/n is an L'-minimizing polynomial

on[—Lalu[p, 1]

Proof. Since 7,=p,= p, and by (30), (x—B) pl' ™ =(x—a) §,_, =
(x—a) pl' -, we get from Theorem 6 and (28) that

j X*sgn(pog,.)=0 for k=0,..21—2.  (35)
[-La]ulB 1]

Now let S, _, be defined as in (31). Then it follows from (32) that there is a
ce(a, B) such that n{x—c¢) S,_,(x)=7,(x). Thus we get by (34) that

sgn(p.g,—)=sgn(7,-7,) on(—La)u(B 1)

Because of (35) the assertion is proved.
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