
JOURNAL OF APPROXIMATION THEORY 52, 241-268 (1988)

Orthogonal Polynomials in L l-Approximation

FRANZ PEHERSTORFER

Institut jur Mathematik, J. Kepler Universitiit Linz,
A-4040 Linz, Austria

Communicated by P. L. Butzer

Received August 13, 1984; revised June 7, 1985

I. INTRODUCTION

Let U b kEN 0, denote the Chebyshev polynomial of the second kind of
degree k. We say that a real function h defined on [a, b], a, bE IR, a < b, is
a sign function on [a, b] if there is a decomposition of the interval [a, b],
a=xo<x 1< ... <xT=h, rEN, such that h or -h takes the value (_I)J
on the interval (Xi _ I , x j ), j = 1, ... , r. S(h, [a, b]) denotes the number of
changes of sign of h on [a, b].

Many questions on L I-approximation lead to the following problem:

(a) Let real numbers bl, ... , bn be given. Determine a sign function h
on [- 1, + I] with sell, [ - 1, + I]) = I (?: n), such that

f
+l

UJx) h(x) dx = hk + 1
-1

I.e.,

r sin klp h(lp) dlp = bk

where h( lp ) = h(cos lp) for lp E [0, TC].

for k = 0, ..., n - I,

for k = I, ... , n,

(I)

Under appropriate conditions on the numbers hk> we describe in this
paper all those sign functions which have a finite number of changes of sign
and satisfy (1). It is shown that the points at which those sign functions
change sign depend in a certain manner on orthogonal polynomials.

For the special case seT!, [ - I, + I ] ) = n, problem (a) is of a type similar
to the so-called L-problem of moments treated by Ahiezer and Krein [4]
and Geronimus [6]. See also [8].

This paper is organised as follows. In Section 2 we solve problem (a)
for the special (but very important) case where S(h, [ - 1, + 1]) = n. In
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Section 3 we describe all sign functions which solve (I ). Section 4
contains applications of the theory to special problems (Posse's
problem, L I-approximation on several intervals, etc.). Finally, we show
in Section 5 that there is a close connection between Chebyshev-, L 1_, and
L2-approximation with respect to a suitable weight function on two
intervals.

2. SOLUTION OF PROBLEM (a) FOR THE SPECIAL CASE s(li, [ - I, + 1] ) = n

In order to state our results we need the following notation. Let D be the
open unit disk {z Ilzl < I} in the complex plane. As usual we call a function
F: D -+ C a CaratModory function (C-function) if F is analytic in D and
Re F(z) >°for ZED. It is well known that a function F, normed by
F(O) = 1, is a C-function if and only if it admits a representation

1 f2IT ei'P + z
F(z) =- -.- da(cp)

2n 0 el'P- z
for ZED,

where a is a nondecreasing function with (1/2n) g" da( cp ) = 1. If F is a real
C-function, i.e., if F takes real values for real z, then a(cp) = -a(2n ~ cp) for
cp E [0, 2n]. A bounded nondecreasing function a on [0, 2n] with an
infinite set of points of increase will be called a distribution function.
Furthermore, we say that a C-function F is nondegenerate if a is a dis
tribution function, i.e., F is not of the form ic + L:J= I lli(ei'PJ+ z )/(ei'PJ - z)),
where c E IR, Ilj E IR +, and °~ cp 1< CP2 < ... < CPn ~ 2n.

If a is a distribution function on [0, 2nJ normed by (1/2n) HIT da( cP ) = 1,
then Pn(z) = zn + ... denotes that polynomial which is orthogonal on the
unit circle with respect to the weight da, i.e.,

for j = 0, ..., n - 1.

denotes the polynomial of second kind with respect to da.
Let us note that the polynomials P n resp. Q n satisfy a recurrence relation

of the type

resp.
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where P:(z)=znPn(z-l) denotes the reciprocal polynomial of Pn- The
parameters an and thus the polynomials Pn resp. Qn are real, if
a( q» = -a(2n - q» for q> E [0, n]. Polynomials which are orthogonal on
the unit circle are studied in detail in [7]; see also [16].

Henceforth we call a sign function li (h) on [-1, + 1] ([0, n]) a normed
sign function if lim, ~ 0+ li(l - E) = 1 (limH 0+ h(E) = 1).

THEOREM 1. Let a real sequence (bdkE I'\J be given and let F(z) =
exp( - L:J:'= 1 bkzk). Suppose that F is a nondegenerate C-function with
distribution function a. For each n EN let hn be that normed sign function on
[0, n] which changes sign exactly at the n zeros of the cosine polynomial
(z = ei'P, q> E [0, n])

Re{z-(n-l)/2Pn(Z)} Im{z-(n-l)/2Qn(z)}

sm q>

Then

(a) f~ sin kq> hn(q» dq> = bk for k = 1, ..., n,

(b) f~sin(n+l)q>hn(q»dq>-bn+l= (4/n)f~[Re{z-(n-l)/2Pn(z)}r

da( q»,

(c) there is no other normed sign function gn with S( gn' [0, n]) ~ n
which satisfies (a).

Proof Ad (a). In view of [7, pp. 14--15] and the fact that Pn and Qn
have real coefficients, the following representations hold:

(n+ l-b[-b2)/2
= (z - 1)b1(Z + 1)b2 n (1 - 2 cos 'Pjz + Z2)

j= 1

and

zQn(z) - Q:(z)

(n+ I-b~ -b;)/2
=(z-l)bi(z+l)b; n (l-2coSq>jZ+Z2), (2)

j~1

where

<5 1 =<5 2 =0

<5 1 = <5; = 0

and

and

for n odd,

for n even,
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'Pj,qJjE(O,n) and 0<'PI <qJI<'P2<qJ2<···. Setting m=(n+l
01- O2 )/2 and m' = (n + 1- 0'1 - 0;)/2, we get for z = ei<p, qJ E [0, nJ, that

2 Re{z-(n-I)/2Pn(z)}

= z-(n+ 1)/2[ZPn(Z) +P:(z)J

m

= (z- 1)"I(z + 1)"2 z-("1 +"2)/2 2m n (cos qJ - cos 'P/)
/= I

and
2i Im{z-(n-l)/20n(z)}

= z-(n+ 1)/2[zOn(z) - O:(z)J

m'

= (z -1)";(z + 1)"2Z-("; +"2)/2 2m ' TI (cos qJ -cos qJj)'
j=1

Since (see [7, Theorem 6.1 J)

for zED, we obtain that

n

= - L bkzk+O(Zn+l),
k=l

where the principal branch of In is chosen. Using the series expansion

00 cos kqJ
In(l- 2 cos qJZ + Z2) = -2 L -k- Zk

k~l

we deduce that

(3)

(4 )

(5)

2{m' m 1_(_I)k+n}
bk="k j~l coskqJj-j~1 cosk'Pj + 2

=f'sinkqJhn(qJ)dqJ for k=I, ...,n, (6)
o

where the last equality follows by direct calculation.
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(b) From the relations (see [7, (18.11) and (18.12)])

245

for nENo, where co=(l/2n)g"da(q»=1 and Kn =(l/2n)g"IPn (zW
da(q», it follows that for n E No and zED

F(z) - Q:;(z) - zQn(z) = 2Kn(1 + an) zn + I + O(zn + 2). (7)
P:;(z) + zPn(z)

Furthermore, let us note (see [7, (4.1) and (31.12)]) that

Using the relation

we obtain that

From (4), (5), and (6) it follows that for zED

I
(z - 1)b;(Z + I )b; nj~ I (I - 2 cos q>jz + Z2)n - ....:....-_.:..."........:....-----.:....,-::...=L..::..:..- ---.:...;:....-_.;...
(z -I )b1(Z + I )b2 nj~ 1(1- 2 cos 'P;z + Z2)

=-(b1z+ ... +bnZn+ f bk.nZk),
k=n+l

where

(8)

Using relation (2) we obtain that

for k ~ n + 1. (9)
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Since F(O) = 1 we get that

Q::'(z) -zQn(z) _ ~n+1 n+2
F(z)- P::'(z)+zPn(z)-(bn+1,n-bn+d.. +O(z ).

The assertion follows now from (7), (8), and (9).

(c) Concerning part (c), assume that there is an other normed sign
function gn with S(gn, [0, n]):!(n which satisfies (a), Then

for k = 1, .", n, (10)

Since S(hn - gn' [0, n]) :!( n - 1, there is a sine polynomial s =I-°of degree
:!(n, such that sgns(lp)sgn[hAIp)-gn(lp)] ~O, Using the fact that hn=l-gn
on a set of positive measure, it follows that

which is a contradiction to (10).

Remark 1. Let us note (see [7, pp. 2-4 and 6-7]) that the polynomials
Pnand Q n of Theorem 1 depend on b l' ... , bn only.

THEOREM 2. If for each n E N there is a normed sign function hn on
[0, n] such that S(hn, [0, n])=n and

for k= 1, "., n,

then F(z) = exp( - Lk~ I bkzk) is a nondegenerate C-function and hn, n EN,
changes sign exactly at the n zeros of (z = ei<p, Ip E [0, n])

Re{z-(n-l)/2Pn(Z)} Im{z-(n-'l/2Qn(z)}

sin Ip

Proof Suppose that hn changes sign exactly at the n points 'PI' .",

'P[(n+ 1)/2], Ipl> ..., lp[n/2] , where 0< 'PI < Ipl < 'P2< 1p2·.. · Putting

m'

sn+,(z)=(z-I)O;(z+I)O; n (1-2coslpjz+z2)
j~1

and
m

rn+I(Z) = (z _1)0I(Z+ 1)02 n (1- 2 cos 'Pjz + Z2),
j~1
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where 15 I' 15 2 , 15'1, 15;, m, and m' are defined as in the proof of Theorem 1, we
obtain with the help of (4), (5), and (6) that

(11 )

for ZED. On the other hand, partial fraction expansion gives, by setting
lJI(n + 2)/2 = n for n even, that

(12 )

where, since Sn + I and rn + I have interlacing zeros, Aj E IR + for
j = 1, ... , [(n + 2)/2] and

[in + 2)/2]

dk = 2 L Aj cos klJlj
j~ I

for kEN.

Since Aj E IR + it follows (see, e.g., [4]) that the sequence {dd Z, where
do = 2, is positive definite on the circumference. Hence {dk}<f is positive
definite on the circumference. By the Herglotz-Riesz theorem (see, e.g., [4,
p. 45]), (11), and (12), it follows that F is a nondegenerate C-function. In
view of Theorem 1(a) and 1(c) the assertion is proved.

Next let us state some facts about the connection between polynomials
which are orthogonal on the unit circle and polynomials which are
orthogonal on [-1, +1] (see [7,16]).

Notation. Let lJI be a distribution function on [-1, +1] with
S:+: 1dlJl( x) = 1 and let v be a nonnegative polynomial on [ - 1, + 1]. Then
p~ denotes that polynomial of degree n with leading coefficient one, which
is orthogonal to IP n _ I on [- 1, +1] with respect to the weight vdlJl.
Furthermore, let

v _ (x) = f+l v(t) p~(t) - v(x) p~(x) dlJl(t)
qn I -I t - x

denote the polynomial of second kind of vp~ with respect to the weight dIP.

For the following lemma see [7, 16].

LEMMA 1. Let (J( qJ ) = -n lJI(cos qJ) for qJ E [0, n] and (J( qJ ) = n lJI(cos qJ )

for qJ E (n, 2n].
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(a) 2-m+ I Re{z-m+ IPZm_l(z)} = Pm(x),

Im{z-m+ Ip (z)}
2 -m+1 Zm-I = (I-x')(). Pm-l x,sm <p

2- m+1Im{z-m+IQzm_l(z)} _ ()
. -qm_IX'

sm <p

2-m Re{z-m+ I/ZPZm(z)} = p(l +xl(x)
cos <p/2 m'

Im{z·· m+ I/Zp (z)}
2- m Zm p~,x)(x),

sin <p/2

Im{z-m+ I/ZQ (z)}
2-m . Zm = (l +x1(x)

sm <p/2 qm-I

( ) Pm+I(-l) (
= qm X - Pm( -1) qm-I x)

for x=!(z+ l/z), z=ei
"" <pE [0, n].

(c) ~ in [Re{z-m+ IPZm_I(Z)}]Z d(J(<p) = 2Zm - Zf+1 p~(x) d'P(x),
n 0 -I

f
+1

= 2Zm - 1 [p~ +xl(X)]2(1 + x) d'P(x).
-I

Proof Parts (a) and (c) can be found in [7, Sect. 30; 16, p.294].
Part (b) can be proved by the same methods.

Remark 2. If 'P is absolutely continuous and 'P'(x) = w(x), then (J is
absolutely continuous with (J'( <p ) = w(cos <p) Isin <p I.

Remark 3. From Lemma 1 and (2) we obtain the well-known fact that
the zeros of Pm and qm_ I resp. p~ +x) and q~~ t) separate each other, where
the greatest zero of p~ +x) is greater than the greatest zero of q~ ~ t).
Furthermore, we get from Lemma 1 that the zeros of Pm and p~ ~ r2

) resp.
p~ +x) and p~ -xl separate each other, where the greatest zero of p~ +x) is
greater than the greatest zero of p~ - x).

LEMMA 2. Let F with F(O) = 1 be a real nondegenerate C-function with
distribution function (J and let jj denote the distribution function of the real
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(b)

nondegenerate C-function liP. Let Pm be that polynomial which is orthogonal
on [ - 1, + 1] with respect to the weight dip, where n ip(cos cp) = -a( cp ) for
cp E [0, n]. Then

(a) 2- m+1 Re{z-m+ 1Q2ml(Z)}=Pm(x)

2 -m+ I Im{z-m+ IQ2m_I(Z)} _ -(I x 2 )

. -Pm-I
Sill cp

Re{z-m+l/2Q (z)}
2-m 2m =p I1 + x )

COS cpl2 m

Im{z--m+l/2Q (z)}2-m 2m _ -(I x)

sin cpl2 - Pm '

where Q n denotes as above the polynomial of second kind with respect to da.

Proof Since Re F(z»O implies that Re{lIF(z)} = 1/IF(z)1 2 Re F(z) >°
for zED, it follows that 1IF is a real nondegenerate C-function, admitting a
representation

1 1 f2" ei'fJ + z _
-=- -.-da(cp)
F(z) 2n 0 e''fJ- z

for zED,

where u is a distribution function with (1/2n) S6" du( cp ) = 1.
According to [7, Theorem 5.1] we have, for n E No, zED, that

Q*(z)
_n_=F( )+O( n+l)
r:(z) z z ,

from which it follows that

Using the fact that Q n resp. Pn satisfy a recurrence relation of the type

resp.

Pn+ I(Z) = zPn(z) + (-an) P:(z),

we deduce that Q n is orthogonal on the unit circle with respect to the
weight du. From Lemma 1 the assertion follows.
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3. DESCRIPTION OF ALL SOLUTIONS OF PROBLEM (a)

LEMMA 3. Suppose that (J is a distribution function on [0, 2n] with
(J(cp)=-0"(2n-cp). Let IEN o, O~/~n-l, be given and put
Ck = nIt e- Ikip d(J(cp )/n" d(J(cp) for k = 0, ..., n -I. There exist two real
polynomials Sn+ I> Rn+I with leading coefficient one, which have n + 1 simple
zeros elip

} resp. elop
} with O~<PI < 'PI < ... <<Pn+1 < 'Pn+1<2n, such that

if and only if there exists a real polynomial q,(z) = Il;~ I (z - Zj), Zj ED, such
that

and

Proof Necessity. Since Sn + I and R n+ I are real polynomials they are of
the form

(n+ 1-0; -0;)/2

Sn+,(z)=(z-l)oi(z+I)O; Il (1-2zcoscpj+z2)
j= I

resp.
(n+ 1-°1-°2)/2

Rn+(Z) = (z -1 )OI(Z + 1)°2 Il (1- 2z cos 'Pj + Z2),
j=1

(13 )

where <5'1> <5~, <5l> <5 2 E {O, 1}, CPj' 'PjE (0, n).
Using the fact that the zeros of Sn+! and Rn+, interlace, it follows that

and

and

and

for n even,

for n odd.

(14 )

By partial fraction expansion we obtain (compare the proof of
Theorem 2) that the sequence {dk }o, defined by do = 2 and

Sn+I(Z) 1 d d n- = + IZ+ ... + n Z + ... ,
Rn + I(Z)

is positive definite on the circumference. Now let 1\ be that polynomial
which is orthogonal to the sequence {ddo. Then it follows that

and
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Since dk = Ck for k = 1, ..., n -I, we deduce that Pn can be generated by a
recurrence relation of the type

for k = 0, ..., n - 1

with liikl < 1 for k = 0, ..., n - 1 and iik = ak for k = 0, ..., n - 1-I. Thus we
obtain that

and

where q, is generated by the recurrence relation

(16 )

for k = 0, ..., 1- 1,

with qo(z) = 1. Hence q, has all zeros in D and by (15) and (16) the
necessity part is proved.

Sufficiency. Put Pn+ 1,/ = zq,Pn_, and Q n+ 1,1 = zq ,Qn-I' Since Pn+ 1,I

(Q n+ 1,I) has all zeros in D, we deduce by considering arg Pn+ 1,/(ei'P)
(arg Q n+ liei'P)) that the trigonometric polynomials Re{z-(n+ 1l/2Pn+ I,I}
and Im{z-(n+Il/2p } (Re{z-(n+I)/2{j } and Im{z-(n+I)/2Q })n+1,/ n+1,/ n+l,l
have all their zeros in [0, 2n) and their zeros interlace.

Dsing the relation (see [7, p. 7])

(17)

we obtain that (z = ei'P)

Re{z-(n+ 1)/2Pn+ I,I} Re{z-(n+ 1)/2{jn+ l,l}

+ Im{z-(n+ 1)/2p } Im{z-(n+ 1)/2Q }n+ 1,1 n+ 1,/

from which it follows that the zeros of 2 Re {z - (n +1)/2Pn + 1,/} =
z-(n+Il/2R and 2iIm{z-(n+I)/2Q } =z-(n+I)/2s interlacen+1 n+l,I n+1 .

With the aid of (17) we get by simple calculation that

Hence

qt(z) Q:_,(z) - zq,(z) Qn_'(z)

qt(z) P:-lz) + zqlz) Pn_,(z)

Q:_,(z)

P:_,(z)

S () n-'
_ n+1 Z =1+ L ckZk+O(zn+I-')

Rn + I(Z) k~ I

and the lemma is proved.
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THEOREM 3. Assume that the given real sequence (bdkE 1'\1 satisfies the
assumption of Theorem 1. Let n EN, I E No, n > I, and suppose that hn is a
normed sign function on [0, n] with S(h n , [0, n])=n. Then

for k = 1, ... , n -I,

if and only if there exists a polynomial q/(z) = flj~ l(Z - Zj), Zj ED, with real
coefficients, such that hn changes sign exactly at the n zeros of the cosine
polynomial

Re{z-(n-I)f2q /(Z) Pn_/(z)} Im{z (n-I)/2q /(z) Qn_/(z)}

sin cP

Proof Necessity. Suppose that hn changes sign exactly at the points
'PI, ... , 'P[(n+ 1)/2]' CPI' ..., CP[n/2] , where 0< 'PI < CPI < 'P2< CP2 < "', and let
Sn + I and R n + I be defined as in (13). Then we obtain with the aid of (4),
(5), and (6) that

From Lemma 3 it follows that there exists a real polynomial
q/(z) = flj~ I (z - Zj), Zj E D, such that

2 Re{ Z- (n I )/2q/(Z) P
n

_/(z)}

= Z - (n + 11/2R
n

+ 1(z)

m

= (z - l)bl(Z + l)b2Z- (b[ + b2)/2 2m TI (cos cP - cos 'Pj ) (18)
j~l

and
2i 1m {z - (n - 1 )/2q/(Z) Q

n
_/(z)}

= z-(n+ 1)/2Sn+ I(Z)

m'

=(z_1)b;(z+1)b2z-(b;+b2)j22m' TI (cos cP-cos CPj), (19)
j= I

where m = (n + 1 - b l - b2 )/2 and m' = (n + 1 - b~ - b;)/2.

Sufficiency. Putting

z-(n+ Il/2Rn+ I(Z) = 2 Re{z-(n- 1lj2q /(z) Pn_/(z)}

and
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it follows from Lemma 3 that

253

and that Sn + I resp. R n + I is of the form (18) resp. (19). Using the relations
(5) and (6), the sufficiency part is proved.

As a simple consequence of Theorem 3 we obtain a result of the author
which enables one to solve the SolotarefT problem (see [12,13]).

COROLLARY 1. Let n EN, I E No, n> I and let hn be a normed sign
function on [0, n] with S(h n , [0, n]) = n. Then

for k = I, ..., n - I,

if and only if there exists a real polynomial q,(z) = nj ~ I (z - Zj), Zj ED, such
that hn changes sign exactly at the n zeros of the cosine polynomial
1m {zn + I - 2'qj(Z)} /sin q>.

Proof For bk = 0, k = 1, ..., n -I, the assumptions of Theorem 3 are
fulfilled. Since P)z)=Qv(z)=zv for vEN o, the assertion follows
immediately.

4. ApPLICAnONS

In the first part of this section we consider the following problem and
give some applications of it:

(a') Let iX, 11, fl E [ -1, + 1]. Describe that normed sign function hn

with S(hn , [ - 1, + 1]) = n, which satisfies

for k=O,oo.,n-1. (20)

Remark 4. In the following we need the well-known fact (see, e.g.,
[11]) that a C-function Fwith F(O) = 1 admits a representation

1 f27t ehp + z
F(z) =-2 -i-",-lim Re F(re i

"') dq>
n ° e -Zr~l

for ZED,

if f3' IRe F(re ill
) I dO is uniformly absolutely continuous for r < 1.



254 FRANZ PEHERSTORFER

LEMMA 4. For a,{JE[-1, +1], a~{J, AE[-!,n, with {lal,IPI}n
{2IAI};6 {1} and VI' V2 E g, -!}, let

I
x a I)'= -- (1-x)"'(l +x)V2

x-{J

I
x al).= -- (1-x)"'(1+x)"2cos(An)
x-{J

for xE(-1,a)u({J,1),

for x E (a, {J).

By P~"ex) V2) we denote that polynomial of degree n with leading coefficient
one, which is orthogonal to [p> n-l on [-1, 1] with respect to the weight
function W~"/lVl' V2),

(a) Let hn be a normed sign function with S(hn, [-1, 1])=n. Then

for k=O, ..., n-1,

if and only ifhn, n EN, changes sign exactly at the n zeros of the polynomial

P
().' -1/2, -1/2)p( -).,1/2,1/2)
m,ex,/l m-l,ex,/l

P
()., -1/2, 1/2)p( -),,1/2, -1/2)
m,ex,/l m,ex,/l

for n=2m-1,

for n=2m.

Proof Setting 15 1 = arc cos {J, 15 2 = arc cos a, and hn(cp) = hn(cos cp) for
cP E (0, n), it follows immediately that

r Uk(x)hn(x)dx= -2ArUk(x)dx
-1 ex

is equivalent to

for k = 0, ..., n - 1

for k E {1, ..., n}. Thus we obtain with the help of (5) that for ZED
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from which we deduce that

f(cp):= lim ReF(rei'l')=ReF(ei'l')
r_ 1-

255

= I cos cp - cos £5 2 1A

cos cp - cos £5 1

I
coscp-COS152jA (')= cos AX
cos cp - cos 15 1

Furthermore, we obtain that

g( cp ) = Re {11F(ei'l') } = Ilf( cp )

= COS 2 (AX )If( cp)

for cpE(0,£5du(£5 2 ,x),

for cp E (£51> (5 2 ),

Now let us suppose that AE [0, n Using the inequality (z = rei'l',
r E (0,1]) Iz2 -2cos£5jz + 11 2 = r 2 {((l + r 2 )lr) - 2cos(cp - £5d}
{((I + r2 )/r) - 2cos(cp+15,)} ~ 4r2 {1 - cos(cp-£5d}{1 - cos(cp+£5d}
= 4r2

{ cos cp - cos £5 d 2 and the fact that 111 cos cp - cos £5 II)' is integrable on
[0, x], since -1<min{cos15 I ,2A}<I, we obtain by Lebesgue's theorem
that It IRe F(reiO)1 dO is uniformly absolutely continuous for r < 1. Thus, by
Remark 4, the distribution function (J of the real C-function F is absolutely
continuous on [0, x] with

for cp E (0, x). (21 )

Analogously, one demonstrates that (21) holds also for AE [-!, OJ.
The assertion follows now from Theorem 1, Lemma 1, and Lemma 2.

For the special case r:x = - f3 = -1 and AE ( -!, !), Lemma 4 was proved
by Ahiezer and Krein [4, pp. 98-105] and recently proved again by Young
et ai. [17, 18 J.

In 1880, Posse (see [8, pp. 266-268]) studied the following problem,
now known under his name:

What conditions must the numbers a, bE IR, 1 < a < b, satisfy such that
there exists a polynomial Qn = x n+ ... which satisfies

for all Qn E IP' n with leading coefficient one; when the conditions are
fulfilled, find a minimizing polynomial.

Posse solved the above problem with the help of elliptic functions. Tran
forming (22) to the interval [-1, a] u [f3, 1], we are able to express the
minimizing polynomial in terms of orthogonal polynomials.

640/52/3-2
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LEMMA 5. Let a, {3 E ( - 1, + 1) with a ~ {3. Suppose that there exists a
polynomial Qn = x n+ ... such that

r IQnl + rQn~r IQnl + rQn
I (-)fJ -I (-)fJ

for all Qn E IP'n with leading coefficient one. Then

J ~ k - JI k - -(a) _IX sgnQn + fJx -Ofork-O, ...,n-1.
(- )

(b) S(Qn' [ - 1, a]) ~ n - 1.

(c) If S(Qn, [ -1, a]) = n -1, then Qn(a - t:) < 0 for sufficiently
small t: E ~ + . ( > )

Proof (a) Follows by standard arguments.

(b) Assume that S(Qn' [-1,(X])~n-2. Construct QElP'n_I' such
that

sgn Q= sgn Qn

= + 1
(- )

Then it follows from (a) that

on (-1, a),

on (P, 1).
(23)

0=r IQI + flQI,
-I fJ

which is a contradiction.

(c) Suppose that there is a JEIR+ such that Qn(x) > 0 for
« )

X E (a - <5, a). Then there is a polynomial QE IP' n _ I' which satisfies (23).
But this is a contradiction.

THEOREM 4. Let a, {3 E (-1, + 1) with a ~ {3 and let n EN. There exists a
polynomial Qn = x n+ ... such that

for all Qn E IP'n with leading coefficient one if and only if p~-:;:} -1/2, - 112)
(p~-: ;:~. -1/2.1 /2)) has no zero in (iX, 1), if n = 2m - 1 (n = 2m).

When the above condition is fulfilled then

Q- = p( -1/2.-1/2,-1/2)p(1/2, 112, 1/2)n m. ~, fJ m - I, ~, fJ
_ p( -1/2.-1/2, 1/2)p(l/2, 1/2,-1/2)
- m,~. fJ m. ~, fJ

for n=2m-l,

for n=2m,

(24)

(25)

is a minimizing polynomial. Qn is unique, if S(Qn, [ -1, a]) = n.



L I-APPROXIMAnON

Proof Necessity. Let the sign function hn be such that

257

= +1

Then it follows by Lemma 5 that

on [-I,ex],

on (IX, 1].

for k = 0, ... , n - 1,

and S(hn , [ -1, + 1]) = n. By Lemma 4 we conclude that hn is equal a.e. on
[ - 1, +1] to the sign of the polynomial given in (24) resp. (25). Observing
that hn has no change of sign on (ex, 1], the assertion follows from
Remark 3.

Sufficiency. Follows immediately from the fact that

f IQnl +rQn~ f QnsgnQn+rQn= f xnsgnQn+rx
n

-) {i - I fJ I fJ

COROLLARY 2. Let ex, pE (-1, + 1) with IX <P and let n EN. There
exists a polynomial Qn = x n+ .. , such that

for all Qn E IP'n with leading coefficient one if and only if ex and Psatisfy the
condition of Theorem 4.

Proof In view of [8, p. 267] there exists a polynomial Qn such that

for all Pn- 1 E IP'n- I'

f IQnl + rQn<f IQnl + rQn
-I (-)fJ -I (-)fJ

if and only if

r lPn-II + rPn-I~O
-I (_) {J

forall Qn=Xn+ ... ElP'n

Observing that - Pn- I E IP'n- I' the corollary follows immediately from
Theorem 4.

For n odd, the minimal solution of Posse's (transformed) problem can be
determined with the help of Lemma 5 and Theorem 3.
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Next let us consider problem (a') for the case where {tx, fJ} n {2A} =
{± I}, which was excluded in Lemma 4.

LEMMA 6. Suppose that fJ E ( -1, + 1) and let lin be a normed sign
function on [-I, +1] with S(lin, [-1, +l])=n. Then

for k = 0, ..., n - I,

for n=2m,

if and only if lin changes sign at the zeros of the polynomial

[p (X R)-d P (x R)] [qm(x,fJ)-dmqm-l(x,fJ)] I'or n=2m-1,
m ,I-' m m- 1 ,I-' (x + 1) J'

and at the zeros of the polynomial

Pm(X, -l)qm(x, -1)

where dm= qm( -1, fJ)/qm _ 1( -1, fJ), and

Pm(x, t) = [Tm(y(t)) Tm+ l(Y(X)) - Tm+ l(y(t)) Tm(y(x))]/(x- t)

qm(x, t) = Tm(y(t)) Um(y(x)) - Tm+ l(y(t)) Um_ 1(y(x))

with y(x) = (2x - fJ - 1)/( 1- fJ). Tk denotes the Chebyshev polynomial of
first kind of degree k.

Proof Case (1): n = 2m. Let gn_ 1 be that normed sign function which
changes sign exactly at the zeros of

U2m _ 1(y(X)) = Tm(y(x)) Um_1(y(x)),

where y(x) = (2x - fJ - 1)/( 1- fJ). Then it is well known that for
k=O, ..., n-2

By Theorem 1 and Lemma 1 the assertion follows.

Case (2): n = 2m - 1. Setting bk = J~l sin kcp dcp =J~1Uk_1(X) dx for
kEN it follows that

H(Z)=exp (- f bk zk )=exP {-2
1

In(1-2COSb1z:z
2

)}

k=l 1+2z+z

is a nondegenerate C-function which has a simple pole at z = -1. Since
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(see the proof of Lemma 4) sg IRe H(rei'P)1 d({J is uniformly absolutely
continuous on [0, n - e] u [n + e, 2n], e E IR +, we get that

1 f2" ei'P + z
H(z)=-2 -.-dJ1.«({J),

n 0 e''P - z

where

J1.'(({J) = Re H(ei'P) = Icos ({J - cos 15111/2
cos ({J + 1

=0

and J1. has a jump at z = -1 of amount

J1.(n + 0) - J1.(n -0) = n lim {H(z)(z + I)} = n.j2 Jl + cos 15 1 ,
z_ -1

Furthermore, we obtain that

1 1 f2" eiq> + z 1
H(z)=2n 0 ei'P_zJ1'«({J)d({J,

where I/J1.'«({J):=Ofor({JE(b l ,n).
Since one can demonstrate that Pm(x, f3)-dmPm~I(X, 13) is orthogonal

on [ - 1, 1] with respect to the distribution function (x = cos ({J)

lfI(cos ({J) = - J1( ({J )In for ({J E [0, n]

and that [qm(x, f3)-dmqm~I(X, f3)]/(x+ 1) is orthogonal on [-1,1] with
respect to the weight function

w(cos ({J) = sin ({JIJ1' (({J ) for ({J E [0, n],

the assertion follows from Theorem 1, Lemma 1, and Lemma 2.

THEOREM 5. (a) For given y E (!, 00) and m E No there exists a number
13 E ( -1, 1), such that 13 is the smallest zero of the polynomial
p(l/:~ 1/2y, ~ 1/2, ~ 1/2) (p(l/2 ~ 1/2y, 1/2, ~ 1/2)).

m, I,p m, ~I,p

(b) Let y E (!, 00) and mE No be given and assume that 13 E (-1, 1).
Then

r Ip(x)1 dx~yrIp(x)1 dx
-I p
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and
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r [p*(X)[ dX=yfl [p*(x)1 dx
I fi

if and only if (J is that number which satisfies (a).

(c) The above inequality holds for y = ~ if and only if {J E ( - 1, + 1) is
such that

2m + 1 Um( y( - 1)) + Urn _ I (y( - 1))
---

2m - 1 Urn _ I(y( - 1)) + Urn _ 2( y( - 1))

(
_ m + 1= Tm + I(Y( -1 )))

m Tm(y(-I)) '

where y( -1) = -(3 + {J)/(l + (J).

Proof (b) Let yEIR+. As in [14, pp.I72-174], one shows that the
condition

is equivalent to

for all p E IP n _ I and rl Ip*[ =y f; Ip*1 (26)

r p sgn p* - yrp sgn p* =°
-I fi

for all p E IP n _ I

and p* has exactly (n - 1) simple zeros in ({J, 1).
Putting P = ({J - x) p* we deduce that (26) is equivalent to

f+1 fP
P sgn P = (l - 1/y) p sgn P

-I ···1
for all p E [P> n I' (27)

P has n simple zeros in ( - 1, + 1) and the smallest zero of P is {J.
For y E (1/2, 00) it follows from Lemma 4 that

canst. P

= pO/2 - 1/2y, -1/2. - 1/2)p(1/2y- 1/2, 1/2, 1/2)
m,-I, P m-I,-I, P

= p( 1/2)' - 1/2, - 1/2, 1/2)p(1/2 - 1/2y, 1/2, - 1/2)
m,-I,p m,-I,p

for n - 1 = 2m - 2

for n - 1 = 2m - 1

In view of Remark 3, the assertion is proved.

(a) Follows from (b) and the fact that for given y E (0, (0) there
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exists a f3E(-I, +1) and a polynomial p*ElP n _" such that (26) is
fulfilled.

(c) From (27), Lemma 6, and Remark 3, we deduce that (26) holds
for y = ! if and only if 13 is the smallest zero of

Pm(X, 13) - dmPm - I (x, 13)

qm(X, -1)

for n - 1 = 2m - 2,

for n = 2m,

where Pm(x, f3), qm(x, -I) and dm are defined in Lemma 6. With the help
of the well-known relations

T;"(x) = mUm_l(x),

Tm(y(f3)) = (-1 )m,

we obtain that

2m+ 1

2m-I

resp.

Um(y(f3)) = Um( -1)= (-I)m(m + I),

Pm(f3,f3) qm( -1,13)
Pm-,(f3,f3) qm-I(-I,f3)'

m + I Tm + I (y( - I ))
---

m Tm(y(-I)) .

Finally, let us characterize that polynomial of degree n with leading coef
ficient one which deviates least from zero in the L I-norm on several disjoint
intervals. LI-approximation on two intervals was studied in [2,15]. A
criterion for solvability of the L-problem of moments on several intervals
has been given in [3] (see also [8, pp.328-329]).

In the following let E= [ -I, a,] u [f3I' a2] u ... U [f3'-I' a,] u [f3" I]
with -1<a l <f3I< ... <a,<f3,<l.

LEMMA 7. Let £v E { -I, I}, v= 1, ..., I, be given. By Pnp £= (£1' ..., £,),
we denote that polynomial of degree n with leading coefficient one which is
orthogonal on E to IP n _ I with respect to the weight function

Then

1 '(X - f3v)"/2
W,(X)= 2 n --

~v~, x-av

f
+1 , f(3,

Udx) 7dx) dx = L £v Uk(x) dx
-1 V= 1 !Xv

for XEE.

for k = 0, ..., n - 1,
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if and only if hn changes sign at the n zeros of the polynomial

(l-x2 )
Pm,e Pm- I,-e

p~,~x)p~,=:)

for n=2m-l,

for n =2m.

Proof Let bv= arc cos Pv and Kv= arc cos (Lv for v = 1, ..., l. Simple
calculation gives

I /3, I

L Evf Uk- 1 = L Ey(coskbv-coskKy)jk=:bk
v = 1 (Xv V = 1

Putting

for k=l, ...,n.

{

oc; } { I E (1-2COSb Z+Z2)}F.(z)=exp - L bkzk =exp L -2Yln 2 y 2
k ~ I y ~ I 1 - cos K y Z +Z

= I 11-2COSbyz+z2\ev/2
}!I 1- 2 cos KyZ + Z2

{
, ~ Ey (1-2COSbvz+z

2
)}

. exp I 1... -2 arg 1 2 2 '
v ~ I - cos K y Z +Z

we obtain, since

(
1-2COSbvz+z

2
) 0

arg =
1 - 2 cos KvZ + Z2

=n

that

I I ~le'/2Re Fe(ei'i') = n cos q> - cos U v
y ~ I cos q> - cos Kv

=0

and

I

for q> E [0, n]\ L [by, K y ],

v=1

otherwise,

I

for q>E[O,n]\L [bv,KyJ.
y = I

Since J6' IRe Fe(reiO)1 dO is uniformly absolutely continuous (see the proof of
Lemma 4), the assertion follows by Remark 4, Theorem 1, Lemma 1 and
Lemma 2,

Let us note that the notation introduced above differs from that used in
Lemma 4.
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THEOREM 6. Let Qn be a polynomial which deviates least from zero on E
with respect to the L I-norm among all polynomials of degree n with leading
coefficient one. Then (s = (EI' ..., s,))

for n = 2m -1,

for n=2m.

If the minimum is attained for £= (£J, ..., ell then

Q- _ (I-x2)
n-Pm,e'Pm-l,-l

= P~,tx). P~,=-:)

is a minimizing polynomial.

for n= 2m-l

for n=2m

Proof By standard arguments, one shows that Qn is an L1-extremal
polynomial on E if and only if

for k = 0, ..., n - L (28)

Because of (28) it follows that Qn has n simple zeros in (-1, + 1), from
which we deduce that there is always a minimizing polynomial (In on E,
which has n simple zeros in E.

For given, but arbitrary, Ey E{-I,t}, v=I, .."I, let SZm-l,e,
E= (SI' ... , E,), be that polynomial of degree 2m - 1 with leading coefficient
one, which satisfies

f+l , fP'
Uk sgnSZm - 1,e= L Ey Uk

-1 v = 1 ~v

for k=O, .." 2m-2. (29)

By Lemma 7, Theorem 1, and Lemma 1 it follows that

Since the minimizing polynomial QZm-l has all zeros in E, we obtain
from (28) and (29), setting £y=sgnQZm_l(X) for XE(IXY,!3Y)' that
QZm-l = SZm-l e' Using (28) and (29), we find
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=f IS2m-I,c!-f IS2m-I,f.1
[ 1,1] [--I,I]\E

~2f P~,f.w/;.
E

Thus the first part of the theorem is proved for n odd. The case where n is
even is demonstrated in an analogous way.

Furthermore, it follows from Lemma 7 that Qn is of the given form.

5. CHEBYSHEV POLYNOMIALS ON Two DISJOINT INTERVALS

Notation. Let a, {3 E( -I, + 1) with a < {3. For abbreviations let Pn =
p(I/2,-1/2.-1/2) resp. P- =p(-1/2,-1/2.-,1/2) and let W=W(1/2, 1/2.-1/2) resp.n. a, P n n, a. P a, P
W=W(-1/2, 1/2,-1/2), wherep(""') and we"~"~,) are defined in Lemma 4. q

a. P n. a, P a, P n - 1

resp. qn_ I denotes the polynomial of second kind of Pn resp. Pn' Let us note
(see the proof of Lemma 4) that q = p-(1-x

2
) and q- = p(1 __ x

2
}n 1 n n-l n-l·

The orthogonal polynomials {Pn}nE No resp. {Pn}nE No satisfy a
recurrence relation of the type

resp.

For the recursion coefficients an' An resp. an, An' a recurrence relation is
known (see [15]).

Let us recall (see Theorem 6 or [15]) that the LI-minimizing polynomial
on [-1, a] u [{3, 1] can be constructed with the help of the polynomials
Pn and Pn. In this section we will show that these polynomials also play an
important role in Chebyshev approximation on [ - 1, a] u [13, 1].

Notation. We say that a polynomial g;, is a Chebyshev polynomial (T
polynomial) on [- 1, a] u [13, 1] if g;, deviates least from zero on
[ -1, a] u [{3, 1] in the maximum norm among all polynomials of degree n
and leading coefficient one.

A description of T-polynomials on two intervals in terms of elliptic
functions has been given in [1].
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LEMMA 8. Let n EN. Then

(a) (x - o:)p~(x) + (x - j1)(1 - X2)q~_1(X) = An(x + O:n+1 

(j1 + ex)/2), resp. (x - j1) p~(x) + (x- ex)(1-x2) q~_I(x) = An(x + IXn+1

(j1 + ex)/2), where An = 2J:+:: p~w resp. An=2J:+:: p~w.

(b) (x-O:)Pn(x)qn 1(X)-(X-j1)Pn(X)qn_I(X)=(A n-An)/2.

Proof Part (a) has been given in [15, Lemma 3].

(b) Since (see, e.g., [5, Theorem 1.17 J)

)l-exx 1 (f+1 2) 2n+o( 2n+l)_q~--I(X)--. - PnW X X - *
1-j1x~ -I Pn(X)

and

)1 - j1x 1
1-exx~

we obtain that

(1 - exx) q~_I(x) q~_l(X)

(1- j1x) p:(x) p:(x)

(30)

from which (b) follows.

LEMMA 9. The following properties are equivalent: (1) O:n + 1 = (j1- 0: )/2;
(2)qn_I(0:)=0; (3)Pn= Pn; (4)ijn_l(j1)=0; (5)tXn + I =(0:-j1)/2.

Proof (1) <::> (2) follows immediately from Lemma 8(a).

(2)=(3): qn_l(O:)=O implies by Lemma8(b) that

(x - 0:) Pnqn-I = (x - j1) Pnqn-I'

Since rxn+I=(j1-0:)/2 it follows with the help of Lemma8(a) that
Pn(j1) -# O. Using additionally the fact that the zeros of Pn and qn- I strictly
interlace, the implication follows from (30).

(3)=(2):Pn=Pn implies by Lemma8(b) that

Pn[(x-0:)qn-I-(X-j1)qn_1J =An-An-

Hence (x - rx) qn _ I = (x - j1) qn - I .

The remaining equivalences are established analogously.

THEOREM 7. Let n E N. The following properties are equivalent:

(a) :y;, is a T-polynomial on [-1, o:J u [j1, 1J with (n + 2) deviation
points.
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(b) J[-I,~] u [P, I] xkg;;(x) u(x) dx = 0

-1
u(x) = -r===;======

nJ(l- x 2)(x -IX)(X - p)

1

for k = 0, n" n, where

for XE (-1, IX),

for x E (13, 1).

(c) g;; = Pn = fin (g;; attains its maximum at the zeros of
(x2- l)(x - 13) qn_ 1(x)).

Proof (a) => (b): Since g;; has (n + 2) deviation points it follows from
[1, Theorem 11] that g;; attains its maximum at the boundary points -1,
IX,I3, 1 and at (n - 2) points YjE (-1, IX) U (13,1). Setting

n-2
Sn_2(X)= TI (x-Y)

j~l

we get

(31 )

for z E iC\[ -1, + 1],

where L is the minimum deviation, Hence we obtain for x> 1 that

S"_2(X) 1 + 0 ( 1 ) (33)
g;;(x) j(x-lX)(x-f3)(x2-1) X2n

+
2 '

With the aid of [to, Theorem 4.1 and pp, 494-495] we get that

1 f u(t) d
j(z-lX)(z- f3)(Z2 -1) [-I, ~]u [P, I] z- t t

from which (b) follows.

(b)=>(c): In view of (33) it follows that (x> 1)

(X-IX)Sn_2(X) jx-a ( 1 )
-'----:::-c-'.:.,-::...:........:. - + 0 --

g;;(x) - j(x-f3)(x2-1) X2n + 1

f+1 w(t) (1)= --dt+O bi"+T '
-IX-( X

which implies that

g;;(x) = Pn(x) and (34)

Analogously one demonstrates g;; = fi".
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(c)=(a): In view of Lemma 9 and Lemma8(a) we obtain that

Setting Sn_Z(x) = qn_I(X)/(X -IX) it follows that

p~(x)+ (x - IX)(X - 13)( 1- x z) S~ _ z(x) = An,

from which we deduce that Pn is a T-polynomial on [ -1, IX] U [13, 1] with

(n + 2) deviation points and minimum deviation JA:.

(35 )for k = 0, ..., 2n - 2.

COROLLARY 3. Suppose that !Y;, is a T-polynomialon [-1, IX] U [13, 1]
with (n + 2) deviation points. Then !Y;, . :r~/n is an L I-minimizing polynomial
on [-1, IX] U [13,1].

Proof Since!Y;, = Pn = fin and by (30), (x - 13) p~I_-/) = (x - IX) qn-I =
(x -IX) p~I~/), we get from Theorem 6 and (28) that

f xksgn(Pnqn 1)=0
[-I.a]u[fl.l]

Now let Sn-Z be defined as in (31). Then it follows from (32) that there is a
CE(IX,I3) such that n(x-c)Sn_z(x)=:r~(x).Thus we get by (34) that

on ( - 1, IX) U (13, 1).

Because of (35) the assertion is proved.
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